

www.uaic.ro

FIŞA DISCIPLINEI

2022/2023

1. Date despre program

1.1 Instituția de învățământ superior	"Alexandru Ioan Cuza" University of Iaşi
1.2 Facultatea	Physics
1.3 Departamentul	Physics
1.4 Domeniul de studii	Physics
1.5 Ciclul de studii	Master
1.6 Programul de studii / Calificarea	Physics for Advanced Technologies

2. Date despre disciplină

2.1 Denumirea disciplinei			Physics of nonlinear phenomena				
2.2 Titularul activităților de curs		As	Assoc. prof. Dan-Gheorghe DIMITRIU,				
		Assoc. prof. Sebastian POPESCU					
2 2 Titulorul activităților de cominer		Assoc. prof. Dan-Gheorghe DIMITRIU,					
2.3 Filularul activităților de seminar		As	soc. prof. Sebastian P	OPES	CU		
2.4 An de studiu	2	2.5 Semestru	1	2.6 Tip de evaluare	Е	2.7 Regimul discipinei*	OB
* OB - Obligatoriu / OB - Optional							

OB – Obligatoriu / OP – Opțional

3. Timpul total estimat (ore pe semestru și activități didactice)

• • •		2	/			
3.1 Număr de ore pe săptămână	4	din care: 3.2	curs	2	3.3 seminar/laborator	2
3.4 Total ore din planul de învăţământ	3.4 Total ore din planul de învățământ 56 din care: 3.5 curs 28 3.6 seminar/laborator				3.6 seminar/laborator	28
Distribuția fondului de timp						ore
Studiu după manual, suport de curs, bib	liogra	fie și altele				35
Documentare suplimentară în bibliotecă	, pe p	latformele electro	onice de	speci	alitate și pe teren	35
Pregătire seminarii/laboratoare, teme, referate, portofolii și eseuri					40	
Tutoriat					30	
Examinări					4	
Alte activități					0	
3.7 Total ore studiu individual					144	
3.8 Total ore pe semestru					200	
3.9 Număr de credite					8	

4. Precondiții (dacă este cazul)

4.1 De curriculum	Mechanics, Thermodynamics, Differential Equations, Electrodynamics, Electricity and Magnetism/Plasma Physics
4.2 De competențe	All the competences formed and consolidated by the above classes

5. Condiții (dacă este cazul)

5 1 Do doofăgurare o guraului	Online within the maximum limit of the procentage approved by
5.1 De desiașulare a cursului	the Faculty's Council (if necessary)

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAȘI PER LIBERTATEM AD VERITATEM

www.uaic.ro

5.2 De desfăşurare a seminarului/	Online within the maximum limit of the procentage approved by
laboratorului	the Faculty's Council (if necessary)

6. Competențe specifice acumulate

Competențe profesionale	 C1. Identification of the main subjects related to the physics of chaotic phenomena C2. Critical analysis of the results obtained by using the known models/theories C3. Explaining and interpretation of the physical phenomena and the operationality of the key concepts based on the proper use of the laboratory devices
Competențe transversale	 CT1. Identification of the role and responsibilities as a member of a team and the application of communication techniques and efficient teamworking CT2. Analysis and communication of Physics information with didactical, scientific and popularization character; CT3. Opening to lifelong learning; CT4. Language skills at academic level, in English, needed for scientific documentation; CT5. Use of communication and information technologies; CT6. Understanding and applying the principles and the values of professional and research ethics.

7. Obiectivele disciplinei (din grila competențelor specifice acumulate)

7.1 Obiectivul general	Identification of the main characteristics of the nonlinear physics phenomena
7.2 Obiectivele specifice	 At the successful finalization of this course, the students will be able to: Analyze different physical phenomena leading to similar behaviors of different nonlinear systems; Understand the self-assembling mechanisms of self-organized structures which appear in different complex systems; Use the current methods of study of self-organized systems; Formulate hypotheses and models on the obtained experimental research results Critically analyse the obtained results by using the known models/theories Explain and interpret physical phenomena and operate with the key concepts based on the proper using of the experimental results

8. Conținut

8.1	Curs	Metode de predare	Observații (ore și referințe bibliografice)
1.	Main characteristics of nonlinear systems	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	2 hours [1-4]
2.	Qualitative changes in the dynamics of nonlinear systems. Bifurcations.	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	4 hours [1,3,4]
3.	Routes to chaos: by intermittency, by quasi-periodicity, by cascade of period- doubling bifurcations (Feigenbaum scenario). Crises	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	2 hours, [1-3]

www.uaic.ro

4.	Quantities for chaotic states characterization: Lyapunov exponents, Kolmogorov-Sinai entropy, box- counting dimension, informational dimension, correlation dimension, generalized correlation dimension, Hausdorff dimension, Lyapunov dimension	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	4 hours, [1-3]
5.	Chaos control (by feedback methods: Ott-Grebogi-Yorke method, Pyragas methods; through synchronization; inteligent control: by neuronal networks, by adaptive fuzzy logic method; experimental chaos control)	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	2 hours, [1-3]
6.	Nonlinear oscillations	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	3 hours, [1,3,4]
7.	Complex systems; Order, organization and self-organization in complex systems; Intermittent and cascade self- organization	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	2 hours [4,5]
8.	Reaction – Diffusion systems. Turing structures. Application: The Brusselator; Turing structures in plasma systems. The ball of fire (quasi-spherical electric double layer).	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	3 hours [4,5]
9.	Negative differential resistance. S-type negative differential resistance; N-type negative differential resistance; Equivalent electrical circuit of the ball of fire in plasma; Electrical double layer and physical basis of negative differential resistances in plasma	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	3 hours [5]
10.	Self-organization in fluids and magnetofluids	Presentation, demonstration, conversation, university lecture, synthesizing analysis, computer assisted education	3 hours [5]

Bibliografie

Referințe principale:

[1] A. H. Nayfeh, B. Balachandran – Applied Nonlinear Dynamics – Analytical, Computational, and Experimental Methods, Wiley-VCH, Weinheim, 2004;

[2] H. G. Schuster, W. Just - Deterministic chaos. An Introduction, 4th ed., Wiley-VCH, Weinheim, 2005

[3] S. H. Strogatz – Nonlinear Dynamics and Chaos, 2nd ed., Westview Press, Boulder, 2015.

- [4] G. Nicolis Introduction to Nonlinear Science, Cambridge Univ. Press, Cambridge, 1995.
- [5] S. Popescu Probleme actuale ale fizicii sistemelor autoorganizate, Tehnopress, Iași, 2003.

Referințe suplimentare:

[1] R. C. Hilborn – Chaos and Nonlinear Dynamics – An Introduction for Scientists and Engineers, 2nd ed., Oxford University Press, Oxford, 2001;

[2] E. Lorenz – The Essence of Chaos, University of Washington Press, Seattle, 1993;

- [3] J. C. Sprott Elegant Chaos Algebraically Simple Chaotic Flows, World Scientific, Singapore, 2010;
- [4] E. Schöll, H. G. Schuster (Eds.) Handbook of Chaos Control, 2nd ed., Wiley-VCH, Weinheim, 2008.

PER LIBERTATEM AD VERITATEM

www.uaic.ro

8.2	Seminar / Laborator	Metode de predare	Observaţii (ore şi referinţe bibliografice)
1.	Bifurcations, Symmetry-breaking	Exercise solving, discussions	2 hours [1,4] online
2.	Experimental analysis of some scenarios of transition to chaos in plasma (by cascade of sub-harmonic bifurcations, by type I intermittency, Feigenbaum scenario)	Experiment, synthesizing analysis, computer assisted education	2 hours, [1-3] onsite
3.	Turbulence analysis in plasma and liquids. Rayleigh-Bénard convection	Experiment, synthesizing analysis, computer assisted education, numerical simulation	2 hours, [1-3] onsite
4.	Analysis of chaotic time series with specialized software	Synthesizing analysis, computer assisted education, numerical simulation	2 hours, [1-3] online
5.	Chua chaotic circuit. Control of chaos. Synchronization of chaotic circuits.	Experiment, synthesizing analysis, computer assisted education	2 hours, [1-3] onsite
6.	Control of chaos in plasma by using external circuit elements	Experiment, synthesizing analysis, computer assisted education	2 hours, [1-3] onsite
7.	Analysis of uncorrelated dynamics of some complex space charge structures in plasma. Flicker noise	Experiment, synthesizing analysis, computer assisted education	2 hours, [1-3] onsite
8.	Nonlinear oscillations	Exercise solving, discussions	2 hours, [1] online
9.	Modeling nonlinear systems	Exercise solving, discussions	2 hours, [1,4] online
10.	Reaction – diffusion systems	Exercise solving, discussions	4 hours online
11.	Negative differential resistance	Exercise solving, discussions	2 hours online
12.	Self-organization in fluids and magnetofluids	Exercise solving, discussions	4 hours online

Bibliografie

[1] A. H. Nayfeh, B. Balachandran – Applied Nonlinear Dynamics – Analytical, Computational, and Experimental Methods, Wiley-VCH, Weinheim, 2004;

[2] W.-H. Steeb – The Nonlinear Workbook, 4th ed., World Scientific, Singapore, 2008;

[3] H. J. Korsch, H.-J. Jodl, T. Hartmann – Chaos – A Program Collection for the PC, 3rd ed., Springer-Verlag, Berlin, 2008.

[4] H. Haken – Advanced Synergetics – instability hierarchies of self-organizing systems and devices, Springer Verlag (Berlin, Germany) 1983.

9. Coroborarea conținutului disciplinei cu așteptările reprezentanților comunității, asociațiilor profesionale și angajatorilor reprezentativi din domeniul aferent programului

The content of the course perfectly corroborate with the expectations of the community, profesional associations, and main employers representatives from the program's domain.

The content of the syllabus ensures, besides the formation of the above professional competences, the consolidation of divergent thinking, the transfer of knowledge from one area to another, and some transversal competences requested by any company hiring physicists.

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAȘI PER LIBERTATEM AD VERITATEM

10. Evaluare

Tip activitate	10.1 Criterii de evaluare	10.2 Metode de evaluare	10.3 Pondere în nota finală (%)		
10.4 Curs	Project and exam	Continuous, formative, summative	50%		
10.5 Seminar/ Laborator	Active participation in the class activities	Continuous, formative, summative	20 % presence 30 % seminar		
10.6 Standard minim de performanță					
Independent analysis of a typical problem from Non-linear Science, using the characteristic methods and instruments specific to Complexity Science.					

Data completării	Titular de curs	Titular de seminar/laborator
23.09.2022	Assoc. Prof. Dan-Gheorghe DIMITRIU	Assoc. Prof. Dan-Gheorghe DIMITRIU
	Assoc. Prof. Sebastian POPESCU	Assoc. Prof. Sebastian POPESCU

Data avizării în departament

Director de departament

Assoc. Prof. lordana AŞTEFĂNOAEI

FIŞA DISCIPLINEI

2022/2023

1. Date despre program

1.1 Instituția de învățământ superior	"Alexandru Ioan Cuza" University of Iaşi
1.2 Facultatea	Physics
1.3 Departamentul	Physics
1.4 Domeniul de studii	Physics
1.5 Ciclul de studii	Master
1.6 Programul de studii / Calificarea	Physics for Advanced Technologies

2. Date despre disciplină

2.1 Denumirea disciplinei			Transfer Phenomena				
2.2 Titularul activităților de curs			Pro	Prof. dr. Diana Mihaela MARDARE, Conf. dr. Claudiu COSTIN			
2.3 Titularul activităților de seminar			Pro	of. dr. Diana Mihaela M	ARDA	RE, Conf. dr. Claudiu CO	DSTIN
2.4 An de studiu	II	2.5 Semestru	ru 3 2.6 Tip de evaluare E 2.7 Regimul discipinei [*] OB				
* OB Obligatoriu / OB Optional							

OB – Obligatoriu / OP – Opţional

3. Timpul total estimat (ore pe semestru și activități didactice)

3.1 Număr de ore pe săptămână	4	din care: 3.2 curs	2	3.3 seminar/laborator	2
3.4 Total ore din planul de învăţământ	56	din care: 3.5 curs	28	3.6 seminar/laborator	28
Distribuția fondului de timp					
Studiu după manual, suport de curs, bibli	ografie	e și altele			35
Documentare suplimentară în bibliotecă,	pe pla	tformele electronice de	speci	alitate și pe teren	35
Pregătire seminarii/laboratoare, teme, referate, portofolii și eseuri					35
Tutoriat					12
Examinări					2
Alte activități					
3 7 Total ore studiu individual					119
3.8 Total ore ne semestru					175
3.9 Număr de credite					7

4. Precondiții (dacă este cazul)

4.1 De curriculum	Mechanics, Thermodynamics, Electricity and Magnetism, Plasma Physics, Condensed Matter Physics
4.2 De competențe	Numerical programming, Origin software operation, proficiency in written and oral English

5. Condiții (dacă este cazul)

5.1 De desfăşurare a cursului	
5.2 De desfăşurare a seminarului/ laboratorului	Performing all practical works is mandatory.

6. Competențe specifice acumulate

Competențe profesionale	 C1. Mastery of research methods and techniques, specific to the specialization <i>Physics for Advanced Technologies</i> (1 credit). C2. Understanding and ability to apply the principles and the values of the professional and research ethics (1 credit). C3. Use the software for analyzing and processing experimental data and to perform virtual experiments (1 credit). C4. Use of communication and information technologies (1 credit).
Competențe transversale	 CT1. Identification and proper use of laws, principles, notions and physical methods in various circumstances (1 credit). CT2. Application of Physics knowledge to practical situations (1 credit). CT3. Opening to lifelong learning (1 credit).

7. Obiectivele disciplinei (din grila competențelor specifice acumulate)

7.1 Obiectivul general	Developing theoretical and experimental competences on transport and transfer phenomena in solid bodies, fluids and plasmas.
7.2 Obiectivele specifice	 On successful completion of this course, the students will be able to: Understand and explain the main transport and transfer phenomena in solid bodies, fluids and plasmas. Calculate the relaxation time for different scatttering mechanisms of the charge carriers in solid bodies. Correlate the deposition conditions with the photocatalytic properties of a thin film. Apply the concepts of transfer phenomena to real life situations (estimation of mass and energy losses in experimental, industrial and current usage devices). Solve medium complexity problems on transport and transfer phenomena.

8. Conținut

Γ

8.1	Course	Metode de predare	Observaţii (ore şi referinţe bibliografice)
1.	Recapitulative essential notions.	Lecture, explanation, demonstration, debate	2h / [1-3]
2.	Boltzmann transport equation. Relaxation time.	Lecture, explanation, demonstration, debate	4h / [1-3]
3.	Scatttering mechanisms of the charge carriers in solid bodies.	Lecture, explanation, demonstration, debate	2h / [1-3]
4.	Processes at different interfaces.	Lecture, explanation, demonstration, debate	3h / [1-3]
5.	Electronic processes in photocatalysis.	Lecture, explanation, demonstration	3h / [4,5]
6.	The three moments of the Boltzmann equation: mass, momentum and energy transfer equations.	Lecture, explanation, demonstration	2h / [6,7]

www.uaic.ro

7.	Momentum transfer. Viscosity and the mechanism of momentum transfer. Newton's law of viscosity. Molecular theory of the viscosity of gases.	Lecture, explanation, demonstration	2h / [8,9]
8.	Momentum transfer. Generalization of Newton's law of viscosity. Navier Stokes Equation. Reynolds number. Streamlines.	Lecture, explanation, demonstration, debate	2h / [8,9]
9.	Mass transport. Fick's law of diffusion. Equation of diffusion.	Lecture, explanation, demonstration	2h / [8-10]
10.	Plasma diffusion in a magnetic field. Transport coefficients in plasmas.	Lecture, demonstration, debate	2h / [8-10]
11.	Heat transfer. Coduction. Fourier's law. Thermal conductivity.	Lecture, explanation, demonstration	2h / [8-10]
12.	Heat transfer. Convection. Radiation.	Lecture, explanation, demonstration	2h / [8-10]

Principal References

[1] Diana Mardare, Transport Phenomena in Solid Bodies, Ed. "Gh. Asachi", Iaşi, 2002

[2] P. S. Kireev, Semiconductor Physics, Ed. St. Enc., Bucuresti, 1977

[3] M. Balkanski (Ed.), Handbook on Semiconductors, North-Holland, Amsterdam, 1994.

[4] Diana Mardare, Polycrystalline and Amorphous Thin Films. Titanium oxide, Ed. "Politehnium", Iaşi, 2005 [5] TiO₂ PHOTOCATALYSIS. FUNDAMENTALS AND APPLICATIONS. A. Fujishima,K. Hashimoto, T.

Watanabe, BKC Inc. 4-5-11 Kudanminami, Chiyoda-ku, Tokyo 102-0074 Japan

[6] M. M. Becker, D. Loffhagen, 'Derivation of Moment Equations for the Theoretical Description of Electrons in Nonthermal Plasmas', Advances in Pure Mathematics 3 (2013) 343-352

[7] S. Höfner, The equations of fluid dynamics and their connection with the Boltzmann equation, Lecture notes, Department of Physics and Astronomy, Uppsala University,

http://www.astro.uu.se/~hoefner/astro/teach/adp08_L3_notes.pdf

[8] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd Edition, John Wiley & Sons, NY, 2002

[9] J. R. Welty, C. E. Wicks, R. E. Wilson, G. L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, 5th Edition, John Wiley & Sons, USA, 2008

[10] F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, USA, 2007

Supplementary References

[11] Scientific papers

8.2	Seminar / Laboratory	Teaching Methods	Comments (ore și referințe bibliografice)
1.	The growth of a polycrystalline solid from the solution	Experiment	2h / [1,3]
2.	Effective mass of charge carriers	Problems and exercises	2h / [3,4]
3.	Demonstration of different relations presented during the course.	Problems and exercises	4h / [3]
4.	Different expressions of the relaxation time.	Problems and exercises	2h / [1]
5.	Study of the photocatalytic /hydrophilic properties of a material	Driven experiment	4h / [1,2,5]
6.	Study of the ambipolar diffusion in a non- magnetized plasma.	Laboratory experiment, observation	2h / [6]
7.	Study of the diffusion in a magnetized plasma.	Laboratory experiment	2h / [6]
8.	Solving 1D mass transfer equation using numerical methods.	Solving problems by numerical methods	2h / [7,8]

Defe			
9.	Computing electron difusion coefficient in magnetized plasmas	Solving problems by numerical methods	2h / [9]
8.	Computing electron drift velocity in magnetized plasmas.	Solving problems by numerical methods	2h / [9]
10.	Solving 1D energy transfer equation using numerical methods.	Solving problems by numerical methods	2h / [7,8]
9.	Solving 1D momentum transfer equation using numerical methods.	Solving problems by numerical methods	2h / [7,8]

References

[1] Laboratory papers

[2] Scientific papers, ISI quoted

[3] Diana Mardare, Transport Phenomena in Solid Bodies, Ed. "Gh. Asachi", Iaşi, 2002

[4] L.L.Kazmerski (Ed.) *Polycrystalline and Amorphous Thin Films and Devices*, Academic Press, New York, 1980.

[5] TiO₂ PHOTOCATALYSIS. FUNDAMENTALS AND APPLICATIONS. A. Fujishima, K. Hashimoto, T.

Watanabe, BKC Inc. 4-5-11 Kudanminami, Chiyoda-ku, Tokyo 102-0074 Japan

[6] G. Popa, D. Alexandroaei, Îndrumar de lucrări practice pentru fizica plasmei, Ed. Universității Alexandru Ioan Cuza, Iași, 1991

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, US, 2009

[8] G. H. Golub, C. F. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, US, 2013

[9] C. Costin, T. M. Minea, G. Popa, 'Electron transport in magnetrons by a posteriori Monte Carlo simulations', Plasma Sources Science and Technology 23(1) (2014) 015012

9. Coroborarea conținutului disciplinei cu așteptările reprezentanților comunității, asociațiilor profesionale și angajatorilor reprezentativi din domeniul aferent programului

Studying this discipline the students acquire knowledge about transfer phenomena. This allows students to apply the concepts of transfer phenomena to real life problems: design and optimization of different devices that use thin films such as optoelectronic devices, gas sensing, solar cells, etc; estimation and prediction of mass and energy losses in experimental, industrial and current usage devices. The students will be thus prepared to be integrated in research or industrial activities.

10. Evaluare

Activity	10.1 Assesment criteria	10.2 Assesment methods	10.3 Weight in the final mark (%)	
10.4 Course	 completeness and correctness of the acquired knowledge; capacity of operating with the acquired knowledge; capacity of analysis, personal interpretation, originality, creativity. 	Summative assessment (final) - written exam.	60 %	
10.5 Seminar/ Laboratory	 active participation to practical works; the capacity of using in practice the acquired knowledge. 	Formative assessment (during the semester) - work projects.	40 %	
10.6 Standard of minimum performance				
Minimum mark to both course and laboratory: 5.				
Independent solving of a typical problem of medium complexity using the formalism of transfer phenomena.				
Attendance to laboratories and seminars (100%). Written report for every practical work.				

PER LIBERTATEM AD VERITATEM
www.uaic.ro

Data completării 26.09.2022 Titular de curs, Prof. dr. Diana Mihaela MARDARE Conf. dr. Claudiu COSTIN Titular de seminar, Prof. dr. Diana Mihaela MARDARE Conf. dr. Claudiu COSTIN

Data avizării în departament

Director de departament, Conf. dr. lordana AŞTEFĂNOAEI

www.uaic.ro

FIŞA DISCIPLINEI

2022-2023

5

1. Date despre program

1.1 Instituția de învățământ superior	"Alexandru Ioan Cuza" University of Iaşi
1.2 Facultatea	Faculty of Physics
1.3 Departamentul	Physics
1.4 Domeniul de studii	Physics
1.5 Ciclul de studii	Master
1.6 Programul de studii / Calificarea	Physics for Advanced Technologies

2. Date despre disciplină

2.1 Denumirea disciplinei		De	sign of computer algo	rithms			
2.2 Titularul activităților de curs		As Le	Assoc. Prof. PhD. Claudiu COSTIN Lect. PhD. Radu TANASĂ				
2.3 Titularul activităților de seminar		As Le	soc. Prof. PhD. Claudi ct. PhD. Radu TANASĂ	u COST Á	ÎN		
2.4 An de studiu	2	2.5 Semestru	ru 3 2.6 Tip de evaluare EVP 2.7 Regimul discipinei [*] OP				OP
* OB – Obligatoriu / OP – Optional							

ligatoriu / OP – Opţio

3. Timpul total estimat (ore pe semestru și activități didactice)

3.1 Număr de ore pe săptămână	4	din care: 3.2	curs	2	3.3 seminar/laborator	2
3.4 Total ore din planul de învăţământ	56	din care: 3.5	curs	28	3.6 seminar/laborator	28
Distribuția fondului de timp						ore
Studiu după manual, suport de curs, bibli	ograf	fie și altele				21
Documentare suplimentară în bibliotecă, pe platformele electronice de specialitate și pe teren					14	
Pregătire seminarii/laboratoare, teme, referate, portofolii și eseuri					28	
Tutoriat					6	
Examinări						
Alte activități						
3.7 I otal ore studiu individual					69	
3.8 Total ore pe semestru					125	

3.9 Număr de credite

4. Precondiții (dacă este cazul)

4.1 De curriculum	Undergraduate course in programming languages, Modelling of physical processes.
4.2 De competențe	Numerical programming skills; scientific graphing and data analysis software operation; proficiency in written and oral English.

5. Condiții (dacă este cazul)

5.1 De desfășurare a cursului	Room with access to internet, videoprojector and projection screen.
5.2 De desfășurare a seminarului/ laboratorului	Students must have individual access to computers.

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAȘI PER LIBERTATEM AD VERITATEM

6. Competențe specifice acumulate

Competențe profesionale	 C1. Mastery of research methods and techniques, specific to the specialization Physics for Advanced Technologies. (1 credit) C2. Use the software for analyzing and processing experimental data and to perform virtual experiments. (1 credit) C3. Use of communication and information technologies. (1 credit)
Competențe transversale	CT1. Language skills at academic level, in foreign languages, needed for scientific documentation. (1 credit) CT2. Capacity of interrelationing and teamworking. (1 credit)

7. Obiectivele disciplinei (din grila competențelor specifice acumulate)

7.1 Obiectivul general	The course aims to develop the formal thinking abilities needed for algorithm analysis and the practical skills for algorithm selection, design and implementation in real-world problem solving.
7.2 Obiectivele specifice	 On successful completion of this course, students will be able to: Explain the algorithm design paradigms, randomization and dynamic programming. Describe a basic set of numerical algorithms used in Physcis. Use computing modeling tools to describe Physics problems. Develop medium-complexity algorithms for real-world problem solving.

8. Conținut

ſ

8.1	Curs	Metode de predare	Observaţii (ore şi referinţe bibliografice)
1.	Introduction to numerical algorithms. Random numbers generation.	Lecture, explanation, demonstration	2h [1,2]
2.	Transformation of uniform deviates. Inverse of the Cumulative Distribution Function (ICDF) method. Acceptance-rejection method.	Lecture, explanation, demonstration	2h [1,2]
3.	Generation of random numbers with specific distributions: uniform, isotropic, normal (Gauss), cosine, Maxwell-Boltzmann.	Lecture, explanation, demonstration, debate	2h [1,2]
4.	Monte Carlo Methods. Monte Carlo Collision. Radioactive decay.	Lecture, explanation, demonstration, debate	2h [1-3]
5.	Diffusion process. Random walks algorithm.	Lecture, explanation, demonstration, debate	2h [2]
6.	Particle-In-Cell technique. The computational cycle. Space and time discretisation. Particle loading, injection, boundary conditions.	Lecture, explanation, demonstration, debate	2h [4]

www.uaic.ro

7.	Particle-In-Cell technique. Particle and force to grid weighting.	Lecture, explanation, demonstration, debate	2h [4]
8.	Ising model: general presentation. 1D, 2D and 3D cases. Theoretical treatment and phase transition study in Ising models.	Lecture, exemplification	2h [5-7]
9.	Monte Carlo Metropolis dynamics. Glauber dynamics. Kawasaki dynamics.	Lecture, exemplification	2h [5-7]
10.	Special types of Ising models: Random Anizotropy Ising, Random Field Ising, Spin glasses. Edward Anderson Spin Glass model.	Lecture, exemplification	2h [5-7]
11.	Cellular automaton.	Lecture, exemplification	2h [5-7]
12.	Introduction to finite element method (FEM). Brief history. Applications and advantages of FEM. Interpolation methods.	Lecture, exemplification	2h [8]
13.	Weak formulation of the partial differential equations. Principle of FEM. Comparison with finite difference method. Interpretation of the approximate solution.	Lecture, exemplification	2h [8]
14.	Fast Fourier Method (FFT) to evaluate the magnetic field interactions distribution in a regular lattice.	Lecture, exemplification	2h [9]

Bibliografie

Referințe principale:

- 1. J. E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd Edition (Springer, 2003).
- 2. Morten Hjorth-Jensen, Computational Physics (University of Oslo, Fall 2009).
- 3. D. Depla, S. Mahieu (eds.), *Reactive Sputter Deposition*, Springer Series in Materials Science, vol. 109 (Springer, Berlin, 2008), chapter 3.
- 4. C. K. Birdsall and A. B. Langdon, *Plasma Physics via Computer Simulations* (IOP Publishing, New York, 1991).
- 5. G.S.Fishman, *Monte Carlo: Concepts, Algorithms, and Applications* (Springer Verlag, New York, 1995). "*Monte Carlo Methods in Statistical Physics*", ed. K. Binder (Springer-Verlag, 1979).
- 6. K. Binder and D.W. Heermann, *Monte Carlo Simulation in Statistical Physics. An Introduction*, 4th Edition (Springer, 2002).
- 7. N. Metropolis and S. Ulam, "The Monte Carlo method", *Journal of the American Statistical Association* 44:335-341, 1949.
- 8. Anastasis C. Polycarpou, *Introduction to the finite element method in electromagnetics*, Synthesis lectures on computational electromagnetics (Morgan & Claypool Publishers, 2006).
- 9. C. Sidney Burrus, Fast Fourier Transforms (Open Textbook Library, 2012).

Referințe suplimentare:

10. http://stoner.phys.uaic.ro/moodle/

11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, *Numerical Recipes in C, The Art of Scientific Computing*, 2nd Edition (Cambridge University Press, New York, 2002).

8.2	Seminar / Laborator	Metode de predare	Observații (ore și referințe bibliografice)
1.	Comparison of different random numbers generators.	Numerical applications, guided discovery process	2h [1,2]
2.	Generation of random numbers with specific distributions using the Acceptance-rejection method.	Numerical applications, guided discovery process	2h [1,2]
3.	Generation of random numbers with specific distributions using the ICDF method.	Numerical applications, guided discovery process	2h [1,2]

4.	Code development for collision treatment using the Monte Carlo Collision method.	Numerical applications, guided discovery process	2h [3]
5.	Code development for collision treatment using the null-collision method.	Numerical applications, guided discovery process	2h [3]
6.	Code development for the study of diffusion <i>via</i> random walks.	Numerical applications, guided discovery process	2h [2]
7.	Code development for the study of the radioactive decay.	Numerical applications, guided discovery process	2h [2]
8.	One-dimensional Ising model: numerical implementation and validation against analytical solution.	Conversation, explanation	2h [4-6]
9.	Two-dimensional Ising model: Metropolis dynamics.	Conversation, explanation	2h [4-6]
10.	Two-dimensional Ising model: Glauber dynamics.	Conversation, explanation	2h [4-6]
11.	Cellular automaton: Game of life.	Conversation, explanation	2h [4-6]
12.	Cellular automaton: critical phenomena, self-organization.	Conversation, explanation	2h [4-6]
13.	Open source Finite Element Method (FEM) solving packages: FEniCSx.	Conversation, explanation	2h [7]
14.	Fast Fourier Transform numerical algorithm.	Conversation, explanation	2h [8]

Bibliografie

Referințe principale:

1. J. E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd Edition (Springer, 2003).

2. Morten Hjorth-Jensen, Computational Physics (University of Oslo, Fall 2009).

3. D. Depla, S. Mahieu (eds.), *Reactive Sputter Deposition*, Springer Series in Materials Science, vol. 109 (Springer, Berlin, 2008), chapter 3.

4. G.S.Fishman, *Monte Carlo: Concepts, Algorithms, and Applications* (Springer Verlag, New York, 1995). "Monte Carlo Methods in Statistical Physics", ed. K. Binder (Springer-Verlag, 1979).

5. K. Binder and D.W. Heermann, *Monte Carlo Simulation in Statistical Physics. An Introduction*, 4th Edition (Springer, 2002).

6. N. Metropolis and S. Ulam, "The MonteCarlo method", *Journal of the American Statistical Association* 44:335-341, 1949.

7. Anders Logg, Kent-Andre Mardal, Garth Wells, *Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book* (Springer, 2012).

8. C. Sidney Burrus, *Fast Fourier Transforms* (Open Textbook Library, 2012).

Referințe suplimentare:

9. http://stoner.phys.uaic.ro/moodle/

10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, *Numerical Recipes in C, The Art of Scientific Computing*, 2nd Edition (Cambridge University Press, New York, 2002).

9. Coroborarea conținutului disciplinei cu așteptările reprezentanților comunității, asociațiilor profesionale și angajatorilor reprezentativi din domeniul aferent programului

www.uaic.ro

Algorithm analysis and design are compulsory components of computer programming education, required by both scientific and industrial research.

10. Evaluare

Tip activitate	10.1 Criterii de evaluare	10.2 Metode de evaluare	10.3 Pondere în nota finală (%)
10.4 Curs	 completeness and correctness of the acquired knowledge; capacity of operating with the acquired knowledge; capacity of analysis, personal interpretation, originality, creativity. 	Formative assessment (during the semester) - written tests.	50%
10.5 Seminar/ Laborator	 active participation to practical works; the capacity of using in practice the acquired knowledge. 	Formative assessment (during the semester) - problem solving and homeworks.	50%
10.6 Standard minim de performanță			
Minimum grade (course and laboratory): 5. Explain the specific steps required to develop algorithms for solving problems of medium difficulty. Independent solving of a medium complexity problem using numerical algorithms.			

Data completării 26.09.2022 Titular de curs Assoc. Prof. PhD. Claudiu COSTIN Lect. PhD. Radu TANASĂ Titular de seminar Assoc. Prof. PhD. Claudiu COSTIN Lect. PhD. Radu TANASĂ

Data avizării în departament

Director de departament

Assoc. Prof. PhD. lordana AŞTEFĂNOAEI